Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Performance improvement of oxide thin-film transistors with a two-step-annealing method

Identifieur interne : 000061 ( Main/Repository ); précédent : 000060; suivant : 000062

Performance improvement of oxide thin-film transistors with a two-step-annealing method

Auteurs : RBID : Pascal:14-0025767

Descripteurs français

English descriptors

Abstract

In this paper, a thin-film transistor (TFT) with indium zinc oxide (IZO) channel layer was fabricated using a two-step-annealing method in which the IZO film experienced annealing steps before the etch-stopper-layer formation and after the whole device completion. The device showed better uniformity and better stability under positive bias stress, negative bias illumination stress, and temperature stress, compared to those with only one post annealing step. The calculated falling rate of the Fermi lever of the IZO channel for the two-step annealing device was as high as 0.593 eV/V, compared to 0.213 eV/V for the only-post-annealing-step one. And the corresponding density of subgap state was 4.4 x 1015 and 1.6 x 1016 eV-1 cm-3 for the device with two annealing steps and with only one post annealing step, respectively.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0025767

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Performance improvement of oxide thin-film transistors with a two-step-annealing method</title>
<author>
<name>MIN LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Luminescent Materials and Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LINFENG LAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Luminescent Materials and Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>MIAO XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Luminescent Materials and Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HUA XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Luminescent Materials and Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>DONGXIANG LUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Luminescent Materials and Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>PENG XIAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Luminescent Materials and Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JUNBIAO PENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Luminescent Materials and Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0025767</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0025767 INIST</idno>
<idno type="RBID">Pascal:14-0025767</idno>
<idno type="wicri:Area/Main/Corpus">000281</idno>
<idno type="wicri:Area/Main/Repository">000061</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1101</idno>
<title level="j" type="abbreviated">Solid-state electron.</title>
<title level="j" type="main">Solid-state electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Density of states</term>
<term>Electric stress</term>
<term>Illumination</term>
<term>Indium oxide</term>
<term>Oxide layer</term>
<term>Performance evaluation</term>
<term>Semiconductor materials</term>
<term>Step method</term>
<term>Thermal stress</term>
<term>Thin film transistor</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Evaluation performance</term>
<term>Transistor couche mince</term>
<term>Méthode à pas</term>
<term>Recuit</term>
<term>Contrainte électrique</term>
<term>Eclairement</term>
<term>Contrainte thermique</term>
<term>Densité état</term>
<term>Oxyde d'indium</term>
<term>Oxyde de zinc</term>
<term>Couche oxyde</term>
<term>Semiconducteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, a thin-film transistor (TFT) with indium zinc oxide (IZO) channel layer was fabricated using a two-step-annealing method in which the IZO film experienced annealing steps before the etch-stopper-layer formation and after the whole device completion. The device showed better uniformity and better stability under positive bias stress, negative bias illumination stress, and temperature stress, compared to those with only one post annealing step. The calculated falling rate of the Fermi lever of the IZO channel for the two-step annealing device was as high as 0.593 eV/V, compared to 0.213 eV/V for the only-post-annealing-step one. And the corresponding density of subgap state was 4.4 x 10
<sup>15</sup>
and 1.6 x 10
<sup>16</sup>
eV
<sup>-1</sup>
cm
<sup>-3</sup>
for the device with two annealing steps and with only one post annealing step, respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1101</s0>
</fA01>
<fA03 i2="1">
<s0>Solid-state electron.</s0>
</fA03>
<fA05>
<s2>91</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Performance improvement of oxide thin-film transistors with a two-step-annealing method</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MIN LI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LINFENG LAN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MIAO XU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HUA XU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DONGXIANG LUO</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PENG XIAO</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>JUNBIAO PENG</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Laboratory of Luminescent Materials and Devices, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>9-12</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888</s2>
<s5>354000501613230020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0025767</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid-state electronics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, a thin-film transistor (TFT) with indium zinc oxide (IZO) channel layer was fabricated using a two-step-annealing method in which the IZO film experienced annealing steps before the etch-stopper-layer formation and after the whole device completion. The device showed better uniformity and better stability under positive bias stress, negative bias illumination stress, and temperature stress, compared to those with only one post annealing step. The calculated falling rate of the Fermi lever of the IZO channel for the two-step annealing device was as high as 0.593 eV/V, compared to 0.213 eV/V for the only-post-annealing-step one. And the corresponding density of subgap state was 4.4 x 10
<sup>15</sup>
and 1.6 x 10
<sup>16</sup>
eV
<sup>-1</sup>
cm
<sup>-3</sup>
for the device with two annealing steps and with only one post annealing step, respectively.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Transistor couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thin film transistor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Transistor capa delgada</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Méthode à pas</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Step method</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Método a paso</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Contrainte électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electric stress</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tensión eléctrica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Eclairement</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Illumination</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Alumbrado</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Contrainte thermique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Thermal stress</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Tensión térmica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Densité état</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Density of states</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Densidad estado</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Couche oxyde</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Oxide layer</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Capa óxido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>25</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000061 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000061 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0025767
   |texte=   Performance improvement of oxide thin-film transistors with a two-step-annealing method
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024